Overview and Identification

- The Remote Sensor (BA/#-PP) is a small temperature conductive plastic sensor used for single point temperature measurement with twin plenum rated lead wires. It is ideal for mounting applications inside electronic circuit enclosures or existing thermostats.

- The Remote Probe is a small Stainless Steel temperature sensor used for single point temperature measurement. It is ideal for bracket mounting for Chamber, Duct, Thermowell or L-bracket applications. It is available with Plenum-Rated, FEP-Jacketed or FEP-Jacketed Submersible Cable.

Both sensors are available with a variety of thermistor or RTD sensing elements. The probe is available alone or with various enclosures.

This instruction sheet is specific to the sensors and probes with the BAPI-Box Crossover Enclosure. For other enclosures, please refer to instruction sheet “20910_ins_Remote_Sensor Passive.pdf” which is available on the BAPI website or by contacting BAPI.

Mounting the Probe

MOUNTING THE PROBE TO A PIPE

Step 1:
Secure Sensor To Have Good Contact With Bare Pipe

Step 2: Insulate Over The Sensor. Insulation should be installed a minimum of 4 pipe diameters on each side of the strap-on sensor. Example: ½" pipe x 4 = 2". Insulation should be 2" on each side of the sensor wrapped all the way around the pipe.

Specifications subject to change without notice.
Mounting the Probe continued...

USING THE BREAK-OFF TAB OF AN FPB

A break-off tab on BAPI’s Flexible Probe Bracket (BA/FPB) may be used to mount the remote probes. The BA/FPB is made out of tough UL94V Nylon and limits heat/cold conduction to the probe from the surface.

![Fig 5: Break-off Tab of a Flexible Probe Bracket (BA/FPB)](image1)

![Fig 6: Probe mounted using the break-off tab from a BAPI Flexible Probe Bracket (BA/FPB)](image2)

Mounting the Optional Enclosure

Mount the enclosure to the surface using BAPI recommended #8 screws through a minimum of two opposing mounting tabs. A 1/8” inch pilot screw hole makes mounting easier through the tabs. Use the enclosure tabs to mark the pilot hole locations.

The BAPI-Box Crossover enclosure has a hinged cover for easy termination and comes with an IP10 rating (or IP44 rating with a pierceable knockout plug installed in the open port).

Notes:

Use caulk or Teflon tape for your conduit entries to maintain the appropriate IP or NEMA rating for your application. Conduit entry for outdoor or wet applications should be from the bottom of the enclosure.

![Fig 7: Remote Probe with BAPI-Box Crossover (BBX) Enclosure](image3)

Wiring & Termination

BAPI recommends using twisted pair of at least 22AWG and sealant filled connectors for all wire connections. Larger gauge wire may be required for long runs. All wiring must comply with the National Electric Code (NEC) and local codes. Do NOT run this device’s wiring in the same conduit as high or low voltage AC power wiring. BAPI’s tests show that inaccurate signal levels are possible when AC power wiring is present in the same conduit as the sensor wires.

TERMINATION OF UNITS WITHOUT A TERMINAL STRIP OR TEST AND BALANCE SWITCH

![Fig 8: 2-Wire Termination for Thermistor or RTDs](image4)

![Fig 9: 3-Wire Termination for RTDs](image5)

Specifications subject to change without notice.
Wiring & Termination continued...

TERMINATION OF UNITS WITH A TERMINAL STRIP OR TEST AND BALANCE SWITCH

TEST AND BALANCE SWITCH:
For units with a Test and Balance Switch, the Norm position allows the real sensor at be monitored at “Sensor A Out”. The High position forces the “Sensor A Out” to a very hot reading and the Low position forces “Sensor A Out” to a very cold reading (see Table at right).

<table>
<thead>
<tr>
<th>Sensor Type</th>
<th>Low Temp (40° F) Resistance Value</th>
<th>High Temp (105° F) Resistance Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000Ω RTD</td>
<td>1.02KΩ (41.20°F)</td>
<td>1.15KΩ (101.5°F)</td>
</tr>
<tr>
<td>3000Ω Thermistor</td>
<td>7.87KΩ (39.8°F)</td>
<td>1.5KΩ (106.8°F)</td>
</tr>
<tr>
<td>10K-2 Thermistor</td>
<td>30.1KΩ (34.9°F)</td>
<td>4.75KΩ (109.1°F)</td>
</tr>
<tr>
<td>10K-3 Thermistor</td>
<td>26.7KΩ (35.9°F)</td>
<td>5.11KΩ (108.4°F)</td>
</tr>
<tr>
<td>10K-3(11K) Thermistor</td>
<td>7.32KΩ (43.7°F)</td>
<td>3.65Ω (105.2°F)</td>
</tr>
</tbody>
</table>

Diagnostics

Possible Problems:
Controller reports higher or lower than actual temperature

Possible Solutions:
- Confirm the input is set up correctly in the front end software
- Check wiring for proper termination & continuity. (shorted or open)
- For units with a Test & Balance Switch, verify that it is in the center position.
- Measure the physical temperature at the temperature sensor’s location using an accurate temperature standard. Disconnect the temperature sensor wires and measure the temperature sensor’s resistance across the sensor output pins with an ohmmeter. Compare the temperature sensor’s resistance to the appropriate temperature sensor table on the BAPI website. If the measured resistance is different from the temperature table by more than 5% call BAPI technical support. Find BAPI’s website at www.bapihvac.com; click on “Resource Library” and “Sensor Specs” then click on the type of sensor you have.
Specifications

SENSOR SPECS

Sensor: Passive
Thermistor NTC, 2 wire
RTD PTC, 2 or 3 wire

Thermistor: Thermal resistor
Temp. Output Resistance
Accuracy (Std) ±0.36°F, (±0.2°C)
Accuracy (High) ±0.18°F, (±0.1°C), [XP] option
Stability < 0.036°F/Year, (<0.02°C/Year)
Heat Dissipation 2.7 mW/°C
Temp. Drift <0.02°C per year
Probe Range -40° to 221°F (-40° to 105°C)

RTD: Resistance Temperature Device
Platinum (Pt) 100Ω or 1KΩ @0°C, 385 curve,
Platinum (Pt) 1KΩ @0°C, 375 curve
Pt Accuracy (Std) ... 0.12% @Ref, or ±0.55°F, (±0.3°C)
Pt Accuracy (High) .. 0.06% @Ref, or ±0.277°F
(±0.15°C), [A]option
Pt Stability ±0.25°F, (±0.14°C)
Pt Self Heating 0.4 °C/mW @0°C
Pt Probe Range -40° to 221°F, (-40° to 105°C)
Nickel (Ni) 1000Ω @70°F, JCI curve
Ni Probe range -40° to 221°F (-40° to 105°C)

Sensitivity: Approximate @ 32°F (0°C)
Thermistor Non-liner
See bapihvac.com “Sensor Specs”
1KΩ RTD (Pt) 3.85Ω/°C
100Ω RTD 0.385Ω/°C
Nickel (Ni) 2.95Ω/°F for the JCI RTD

ENCLOSURE AND WIRING SPECS

BAPI-Box Crossover Enclosure Ratings:
IP10, NEMA 1
IP44 with knockout plug installed in the open port

BAPI-Box Crossover Enclosure Material:
UV-resistant polycarbonate & Nylon, UL94V-0

Environmental Operating Range:
-40 to 221°F (-40 to 105°C)
Units w/ Plenum-Rated Wire: -4 to 167°F (-20 to 75°C)
0 to 100% RH, Non-condensing

Lead Wire: 22AWG stranded

Probe Length
PP 0.875" (22.2mm)
RPP, RPFEP 1.75" (44.5mm)

Wire Insulation
PP Etched Teflon leads, plenum rated
RPP Flame Retardant PVC plenum cable
RPFEP FEP-jacketed plenum rated cable
RPFEP2 FEP-jacketed plenum and submersion rated cable

Probe
PP Heat conductive plastic cup
RPP, RPFEP Rigid, 304 Stainless Steel, 0.25" OD

Agency:
RoHS
PT= DIN43760, IEC Pub 751-1983,
JIS C1604-1989

Specifications subject to change without notice.